2-keto-4-(methylthio)butyric acid (keto analog of methionine) is a safe and efficacious precursor of L-methionine in chicks.

نویسندگان

  • Ryan N Dilger
  • Christoph Kobler
  • Christoph Weckbecker
  • Dirk Hoehler
  • David H Baker
چکیده

Relative bioefficacy and toxicity of Met precursor compounds were investigated in young chicks. The effectiveness of DL-Met and 2-keto-4-(methylthio)butyric acid (Keto-Met) to serve as L-Met precursors was quantified using Met-deficient diets of differing composition. Efficacy was based on slope-ratio and standard-curve methodology. Using L-Met as a standard Met source added to a purified diet, DL-Met and Keto-Met were assigned relative bioefficacy values of 98.5 and 92.5%, respectively, based on weight gain. Relative bioefficacy values of 98.5 and 89.3% were assigned to DL-Met and Keto-Met, respectively, when chicks were fed a Met-deficient, corn-soybean meal-peanut meal diet. Thus, both DL-Met and Keto-Met are effective Met precursor compounds in chicks. Additionally, growth-depressing effects of L-Met, DL-Met, and Keto-Met were compared using a nutritionally adequate corn-soybean meal diet supplemented with 15 or 30 g/kg of each compound. Similar reductions in weight gain, food intake, and gain:food ratio were observed for each compound. Subjective spleen color scores, indicative of splenic hemosiderosis, increased linearly (P < 0.01) with increasing intakes of each compound, suggesting a similarity in overall toxicity among these compounds. Because conversion of Keto-Met to L-Met in vivo merely requires transamination, Keto-Met may prove to be a useful supplement not only in food animal production, but also as a component of enteral and parenteral formulas for humans suffering from renal insufficiency.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biosynthesis of 7, 8-diaminopelargonic acid from 7-keto-8-aminopelargonic acid and S-adenosyl-L-methionine. The kinetics of the reaction.

The transamination of 7-keto-8-aminopelargonic acid by 7, 8-diaminopelargonic acid aminotransferase of Escherichia coli requires S-adenosyl-L-methionine as the amino donor. Initial velocity studies of this reaction revealed a parallel pattern of reciprocal plots characteristic of a ping-pong mechanism. m-Keto-8-aminopelargonic acid showed strong substrate inhibition which was competitive with S...

متن کامل

An evaluation of 4-s-methyl-2-keto-butyric Acid as an intermediate in the biosynthesis of ethylene.

Stimulation of ethylene production by cauliflower (Brassica oleracea var. botrytis L.) tissue in buffer solution containing 4-S-methyl-2-keto-butyric acid is not due to activation of the natural in vivo system. Increased ethylene production derives from an extra-cellular ethylene-forming system, catalyzed by peroxidase and other factors, which leak from the cauliflower tissue and cause the degr...

متن کامل

Preliminary Report of NAD+-Dependent Amino Acid Dehydrogenase Producing Bacteria Isolated from Soil

Amino acid dehydrogenases (L-amino acid: oxidoreductase deaminating EC 1.4.1.X) are members of the wider superfamily of oxidoreductases that catalyze the reversible oxidative deamination of an amino acid to its keto acid and ammonia with the concomitant reduction of either NAD+, NADP+ or FAD. These enzymes have been received much attention as biocatalysts for use in biosensors or diagnostic kit...

متن کامل

Enzymatic Reactions of Methionine Sulfoximine CONVERSION TO THE CORRESPONDING a-IMINO AND a-KETO ACIDS AND TO a-KETOBUTYRATE AND METHANE SULFINIMIDE*

L-Methionine sulfoximine is a substrate of L-amino acid oxidase (Crotalus adamanteus), glutamine transaminase, and y-cystathionase. In the reaction catalyzed by L-amino acid oxidase, methionine sulfoximine is converted to oc-imino-y-methylsulfoximinylbutyrate, which undergoes rapid y elimination yielding methane sulfinimide and 2-imino-3-butenoic acid. Methane sulfinimide is converted to methan...

متن کامل

Dissimilation of methionine by fungi.

Soil fungi that attacked methionine required a utilizable source of energy such as glucose for growth. This is an example of co-dissimilation. Experiments with one of the fungi, representative of the group, are reported. In the absence of glucose, pregrown mycelium, even when depleted of energy reserves, oxidatively deaminated methionine with accumulation of alpha-keto-gamma-methyl mercapto but...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of nutrition

دوره 137 8  شماره 

صفحات  -

تاریخ انتشار 2007